Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Prep Biochem Biotechnol ; : 1-10, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349751

RESUMO

Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.


INVSc-XI and INVSc-XI/XT strains were newly constructed to utilize xylose and glucose.XylA, in combination with xylose transporter Xltr1p, enhances xylose consumption.A small amount of glucose enhanced xylose utilization in INVSc-XI/XT strain.The expression of ACS, ADH, and TKL genes is upregulated in the media containing mixed sugars.The highest ethanol yield of 0.29 g/g was produced in a 2-L scale-up fermenter.

2.
J Proteomics ; 292: 105047, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-37981008

RESUMO

The wide distribution of laccases in nature makes them involved in different biological processes. However, little information is known about how laccase participates in the defense machinery of bacteria against oxidative stress. The present study aimed to elucidate the oxidative stress response mechanism of Bacillus pumilus ZB1 and the functional role of bacterial laccase in stress defense. The oxidative stress caused by methyl methanesulfonate (MMS) significantly induced laccase activity and its transcript level. The morphological analysis revealed that the defense of B. pumilus ZB1 against oxidative stress was activated. Based on the proteomic study, 114 differentially expressed proteins (DEPs) were up-regulated and 79 DEPs were down-regulated. In COG analysis, 66.40% DEPs were classified into the category "Metabolism". We confirmed that laccase was up-regulated in response to MMS stress and its functional annotation was related to "Secondary metabolites biosynthesis, transport and catabolism". Based on protein-protein interaction prediction, two up-regulated DEPs (YcnJ and GabP) showed interaction with laccase and contributed to the formation of laccase stability and adaptability. The overexpressed laccase might improve the antioxidative property of B. pumilus ZB1. These findings provide an insight and the guidelines for better exploitation of bioremediation using bacterial laccase. SIGNIFICANCE: Bacillus pumilus is a gram-positive bacterium that has the potential for many applications, such as bioremediation. The expression of bacterial laccase is significantly influenced by oxidative stress, while the underlying mechanism of laccase overexpression in bacteria has not been fully studied. Elucidation of the biological process may benefit the bioremediation using bacteria in the future. In this study, the differentially expressed proteins were analyzed using a TMT-labeling proteomic approach when B. pumilus was treated with methyl methanesulfonate (MMS). Reactive oxygen species induced by MMS activated the secondary metabolites biosynthesis, transport, and catabolism in B. pumilus, including laccase overexpression. Moreover, the simultaneously up-regulated YcnJ and GabP may benefit the synthesis and the stability of laccase, then improve the antioxidative property of B. pumilus against environmental stress. Our findings advance the understanding of the adaptive mechanism of B. pumilus to environmental conditions.


Assuntos
Bacillus pumilus , Bacillus pumilus/metabolismo , Lacase/metabolismo , Proteômica , Metanossulfonato de Metila/metabolismo , Proteínas de Bactérias/metabolismo , Estresse Oxidativo
3.
Biotechnol Biofuels Bioprod ; 16(1): 164, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915106

RESUMO

BACKGROUND: As a cost-effective and eco-friendly approach, biocatalysis has great potential for the transformation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA). However, the compatibility of each enzyme in the cascade reaction limits the transformation efficiency of HMF to FDCA. RESULTS: Coupled with an alcohol oxidase from Colletotrichum gloeosporioides (CglAlcOx), this study aims to study the potential of bacterial laccase from Bacillus pumilus (BpLac) in an enzymatic cascade for 2,5-furandicarboxylic acid (FDCA) biosynthesis from 5-hydroxymethylfurfural (HMF). BpLac showed 100% selectivity for HMF oxidation and generated 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). CglAlcOx was capable of oxidizing HMFCA to 2-formyl-5-furancarboxylic acid (FFCA). Both BpLac and CglAlcOx could oxidize FFCA to FDCA. At the 5 mM scale, a complete transformation of HMF with a 97.5% yield of FDCA was achieved by coupling BpLac with CglAlcOx in the cascade reaction. The FDCA productivity in the reaction was 5.3 mg/L/h. Notably, BpLac could alleviate the inhibitory effect of FFCA on CglAlcOx activity and boost the transformation efficiency of HMF to FDCA. Moreover, the reaction was scaled up to 40 times the volume, and FDCA titer reached 2.6 mM with a yield of 58.77% at 168 h. CONCLUSIONS: This work provides a candidate and novel insight for better design of an enzymatic cascade in FDCA production.

4.
Int J Biol Macromol ; 243: 125193, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285886

RESUMO

Cellulose materials have poor wet strength and are susceptible to acidic or basic environments. Herein, we developed a facile strategy to modify bacterial cellulose (BC) with a genetically engineered Family 3 Carbohydrate-Binding Module (CBM3). To assess the effect of BC films, water adsorption rate (WAR), water holding capacity (WHC), water contact angle (WCA), and mechanical and barrier properties were determined. The results showed that CBM3-modified BC film exhibited significant strength and ductility improvement, reflecting improved mechanical properties of the film. The excellent wet strength (both in the acidic and basic environment), bursting strength, and folding endurance of CBM3-BC films were due to the strong interaction between CBM3 and fiber. The toughness of CBM3-BC films reached 7.9, 28.0, 13.3, and 13.6 MJ/m3, which were 6.1, 1.3, 1.4, and 3.0 folds over the control for conditions of dry, wet, acidic, and basic, respectively. In addition, its gas permeability was reduced by 74.3 %, and folding times increased by 56.8 % compared with the control. The synthesized CBM3-BC films may hold promise for future applications in food packaging, paper straw, battery separator, and other fields. Finally, the in situ modification strategy used to BC can be successfully applied in other functional modifications for BC materials.


Assuntos
Celulose , Água , Celulose/química , Água/química , Resistência à Tração
5.
Ecotoxicol Environ Saf ; 256: 114856, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37015188

RESUMO

Coexisting multi-pollutants like sulfonamides (SAs) and chlorophenols (CPs) in the ecological environment pose a potential risk to living organisms. The development of a strategy for the effective removal of multiple pollutants has become an urgent need. Herein, we systematically investigated the potential of immobilized bacterial laccase to remove chlorophenols (CPs), sulfonamides (SAs), and their mixtures. Laccase from Bacillus pumilus ZB1 was efficiently immobilized on chitin and its thermal stability, pH stability, and affinity to substrates were improved. Reusability assessment showed the immobilized laccase retained 75.5% of its initial activity after five cycles. The removal efficiency of CPs and SAs by immobilized laccase was significantly improved compared with that of free laccase. In particular, the removal of 2,4-dichlorophenol and 2,4,6-trichlorophenol reached 96.9% and 89.3% respectively within 8 h. The immobilized laccase could remove 63.70% of 2,4-dichlorophenol after four cycles. The degradation pathways of 2,4-dichlorophenol and sulfamethazine were proposed via LC/MS analysis. When the co-pollutants containing 2,4,6-trichlorophenol and sulfamethoxazole, immobilized laccase showed 100% removal of 2,4,6-trichlorophenol and 38.71% removal of sulfamethoxazole simultaneously. Cytotoxicity and phytotoxicity tests indicated that immobilized laccase can alleviate the toxicity of co-pollutants. The results demonstrate that chitin-based laccase immobilization can be an effective strategy for the removal of SAs, CPs, and their co-pollutants.


Assuntos
Clorofenóis , Poluentes Ambientais , Enzimas Imobilizadas/metabolismo , Lacase/metabolismo , Sulfonamidas , Quitina , Clorofenóis/química , Fenóis , Sulfanilamida , Sulfametoxazol
6.
J Hazard Mater ; 443(Pt B): 130370, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444079

RESUMO

Laccases are considered promising tools for removing synthetic dyes from textile and tannery effluents. However, the alkaline pH in the effluents causes laccase instability, inactivation, and difficulty in its bioremediation. Based on a Bacillus pumilus ZB1 (BpLac) derived alkaline stable laccase, this study aimed to elucidate its alkaline stable mechanism at molecular level using molecular dynamics simulation. The effects of metal ions, organic solvents, and inhibitors on BpLac activity were assessed. BpLac formed more salt bridges and negatively charged surface in alkaline environment. Thereafter, pH-induced conformation changes were analyzed using GROMACS at pH 5.0 and 10.0. Among the identified residues with high fluctuation, the distance between Pro359 and Thr414 was stable at pH 10.0 but highly variable at pH 5.0. DSSP analysis suggested that BpLac formed more ß-sheet and less coil at pH 10.0. Principal component analysis and free energy landscape indicated that irregular coils formed at pH 5.0 benefit for activity, while rigid α-helix and ß-sheet structures formed at pH 10.0 contributed to alkaline stability. Breaking the α-helix near T1 copper center would not reduce alkaline stability but could improve dye decolorization by BpLac. Overall, these findings would advance the potential application of bacterial laccase in alkaline effluent treatment.


Assuntos
Bacillus pumilus , Lacase , Simulação de Dinâmica Molecular , Corantes , Têxteis
7.
Ecotoxicol Environ Saf ; 238: 113577, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526458

RESUMO

This study aimed to exploit the potential of Enterococcus faecalis R1107 in the bioremediation of azo dyes. The maximal decolorization of Congo Red (CR), Reactive Black 5 (RB5), and Direct Black 38 (DB38) were 90.17%, 96.82%, and 81.95%, respectively, with the bacterial treatment for 48 h. 65.57% of CR and 72.64% of RB5 could be decolorized by E. faecalis R1107 within 48 h when the concentration of azo dyes increased up to 1000 mg/L. FTIR analysis confirmed that E. faecalis R1107 could effectively break down the chemical structures of three azo dyes. E. faecalis R1107 alleviated the phytotoxicity of azo dyes and improved seed germination, which contributed to the increase in the lengths of roots, stems, and leaves of Vigna radiata seedlings. Transcriptomic analysis suggested that the gene regulatory networks in E. faecalis R1107 synergistically improved the degradation and detoxification of RB5, including the major metabolic pathways, the secondary metabolism, the transport system, the amino acid metabolic pathways, and the signal transduction systems. Simulated textile effluent (STE) was used to mimic real textile effluent to evaluate the bioremediation potential of E. faecalis R1107, and 72.79% STE can be decolorized after E. faecalis R1107 treatment for 48 h. In summary, our study demonstrated that E. faecalis R1107 might be well suitable for potential applications in the bioremediation of textile effluent.


Assuntos
Corantes , Enterococcus faecalis , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/metabolismo , Vermelho Congo , Enterococcus faecalis/metabolismo , Indústria Têxtil , Têxteis
8.
Front Microbiol ; 13: 901690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633711

RESUMO

Biotransformation has gained increasing attention due to its being an eco-friendly way for the production of value-added chemicals. The present study aimed to assess the potential of Bacillus pumilus ZB1 on guaiacyl lignin monomers biotransformation for the production of vanillin. Consequently, isoeugenol, eugenol, and vanillyl alcohol could be transformed into vanillin by B. pumilus ZB1. Based on the structural alteration of masson pine and the increase of total phenol content in the supernatant, B. pumilus ZB1 exhibited potential in lignin depolymerization and valorization using masson pine as the substrate. As the precursors of vanillin, 61.1% of isoeugenol and eugenol in pyrolyzed bio-oil derived from masson pine could be transformed into vanillin by B. pumilus ZB1. Four monooxygenases with high specific activity were identified that were involved in the transformation process. Thus, B. pumilus ZB1 could emerge as a candidate in the biosynthesis of vanillin by using wide guaiacyl precursors as the substrates.

9.
Appl Microbiol Biotechnol ; 106(7): 2751-2761, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278114

RESUMO

Rhodococcus pyridinivorans B403 is a promising bacterium for degrading phenolic pollutants. In the application, the high-concentration substrate has a significant inhibitory effect on cell growth and phenol degradation, which makes adaptive evolution study of bacteria an important guarantee for further application. The present work found evolved R. pyridinivorans (X1 and X2) had enhanced tolerance to phenolic pollutants as compared to the ancestor strain: the minimum inhibitory concentrations (MIC) of phenol, m-cresol, and catechol increased from 1.2, 0.7, 0.8 g/L to 1.8, 1.0, 1.2 g/L of strain X1, and to 2.4, 1.2, 1.4 g/L of strain X2, respectively. Furthermore, compared to B403, X1, and X2 accumulated more biomass in 500-mg/L cresol medium and degraded phenols more efficiently. Correspondingly, genome sequencing revealed that the mutation sites in genes were annotated as encoding phosphotransferase, MFS transporter, AcrR regulator, and GlpD regulator in the adapted strains, which were closely associated with improved phenol tolerance and degradation. The conclusions provided theoretical basis for the phenol tolerance and degradation, which could promote construction of engineering bacteria for practical application. KEY POINTS: • Evolved strains were more resistant to phenols • Evolved strains degraded phenols more quickly • Genome sequencing elucidated mechanisms of enhanced phenol tolerance and degradation.


Assuntos
Poluentes Ambientais , Rhodococcus , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Genômica , Fenol/metabolismo , Fenóis/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo
10.
Bioresour Technol ; 346: 126644, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973402

RESUMO

This short communication analyzed the effects of lignin-derived phenolic acid compounds on cellulase. Vanillic acid, syringic acid, ferulic acid, and isovanillic acid improved cellulase specific activity and saccharification efficiency. In the enzymatic hydrolysis process, the promotion effect of phenolic acid was concentration-dependent. The effect of low concentration of phenolic acids (less than 5 mM) was negligible. After pre-incubating 1 g cellulase with 5 mmol phenolic acid, FPase-specific activity, CMCase-specific activity, and pNPGase-specific activity increased by 57.06%, 136.79%, and 110.61%, respectively. After digestion with pre-incubated cellulase, the saccharification efficiency of phosphoric acid-swollen cellulose increased by 45.13%. Pre-incubation with phenolic acid improved the saccharification efficiency of cellulase. It might be helpful to enhance the comprehensive utilization capacity of lignin-derived compounds.


Assuntos
Celulase , Celulose , Hidrólise , Hidroxibenzoatos/farmacologia , Lignina
11.
Bioresour Technol ; 345: 126414, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838629

RESUMO

The effects of laccase pretreatment and surfactant addition in the simultaneous saccharification and fermentation (SSF) of corn stover by engineered Saccharomyces cerevisiae were studied. Surfactants Tween-80, tea saponin and rhamnolipid improved ethanol production in SSF, among which the biosurfactant rhamnolipid reached the highest ethanol yield. At the 6 d in SSF, the ethanol content of addition rhamnolipid of laccase pretreatment corn stover (Lac-CS) and Lac-CS reached 0.73 g/L and 0.56 g/L, which was 2.32 folds and 1.54 folds higher than the control of 0.22 g/L, respectively. These findings suggested that the combination of laccase pretreatment and rhamnolipid addition further improve ethanol production. GC-MS, composition of corn stover, protein concentration of supernatant and glucose content studies were executed to explore the mechanism of combination strategy of laccase pretreatment and rhamnolipid addition enhance ethanol production. This study provides guidance for the application of laccase and surfactant in bioethanol production.


Assuntos
Etanol , Zea mays , Fermentação , Glicolipídeos , Hidrólise , Lacase
12.
Ecotoxicol Environ Saf ; 226: 112823, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597843

RESUMO

To alleviate the risk of textile effluent, the development of highly effective bioremediation strategies for synthetic dye removal is needed. Herein, we aimed to assess whether intensified bioactivity of Bacillus pumilus ZB1 by oxidative stress could improve the removal of textile dyes. Methyl methanesulfonate (MMS) induced oxidative stress significantly promoted laccase expression of B. pumilus ZB1. Both the level of hydrogen dioxide and superoxide anion showed a significant positive correlation with laccase activity (RSQ = 0.963 and 0.916, respectively) along with the change of MMS concentration. The regulation of laccase expression was closely related to oxidative stress. The overexpressed laccase in the supernatant improved the decolorization of synthetic dyes (16.43% for Congo Red, 54.05% for Crystal Violet, and 41.61% for Reactive Blue 4). Laccase was subsequently expressed in E. coli. Investigation of the potential of bacterial laccase in dye remediation using Congo Red showed that an effective degradation of azo dye could be achieved with laccase treatment. Laccase remediation alleviated the cytotoxicity of Congo Red to human hepatocytes. In silico study identified eight amino acid residues of laccase involved in binding with Congo Red. Overall, regulation of oxidative stress towards bacterium can be used as a promising approach for the improvement of bacterial bioactivity in synthetic dye remediation.


Assuntos
Corantes , Lacase , Biodegradação Ambiental , Vermelho Congo , Escherichia coli/metabolismo , Humanos , Lacase/genética , Lacase/metabolismo , Estresse Oxidativo
13.
Int J Biol Macromol ; 191: 222-229, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34508724

RESUMO

Exoglucanase (CBH) is the rate limiting enzyme in the process of cellulose degradation. The carbohydrate binding module (CBM) can improve the accessibility of cellulase to substrate, thereby promoting the enzymatic hydrolysis of cellulase. In this study, the influence of CBM on the properties of GH6 exoglucanase from Chaetomium thermophilum (CtCBH) is systematically explored from three perspectives: the fusion of exogenous CBM, the exogenous CBM replacement of its own CBM, and the deletion of its own CBM. The parental and reconstructed CtCBH presented the same optimum pH (6.0) and temperature (60 °C) for maximum activity. Fusion of exogenous CBM increased the binding capacity of CtCBH to Avicel by 8% and 9%, respectively, but it had no significant effect on its catalytic activity. The exogenous CBM replacement of its own CBM resulted in a 12% reduction in the binding ability of CtCBH to Avicel, and a 26% reduction in the catalytic activity of Avicel. The deletion of its own CBM significantly reduced the binding ability of CtCBH to Avicel by approximately 53%, but its catalytic activity was not obviously reduced. These observations suggest that binding ability of CBM is not necessary for the catalysis of CtCBH.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Chaetomium/enzimologia , Proteínas Fúngicas/química , Sítios de Ligação , Celulose/química , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólise , Ligação Proteica
14.
Environ Sci Pollut Res Int ; 28(40): 56152-56163, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34046837

RESUMO

Highly toxic phenol causes a threat to the ecosystem and human body. The development of bioremediation is a crucial issue in environmental protection. Herein, Rhodococcus biphenylivorans B403, which was isolated from the activated sludge of the sewage treatment plant, exhibited a good tolerance and removal efficiency to phenol. The degradation efficiency of phenol increased up to 62.27% in the oligotrophic inorganic medium (MM) containing 500-mg/L phenol at 18 h. R. biphenylivorans B403 cultured in the MM medium showed a higher phenol degradation efficiency than that in the eutrophic LB medium. On the basis of the transcriptomic and proteomic analysis, a total of 799 genes and 123 proteins showed significantly differential expression between two different culture conditions, especially involved in phenol degradation, carbon metabolism, and nitrogen metabolism. R. biphenylivorans B403 could alter the phenol degradation pathway by facing different culture conditions. During the phenol removal in the oligotrophic inorganic medium, muconate cycloisomerase, acetyl-CoA acyltransferase, and catechol 1,2-dioxygenase in the ortho-pathway for phenol degradation showed upregulation compared with those in the eutrophic organic medium. Our study provides novel insights into the possible pathway underlying the response of bacterium to environmental stress for phenol degradation.


Assuntos
Fenol , Rhodococcus , Biodegradação Ambiental , Ecossistema , Humanos , Nutrientes , Proteômica , Rhodococcus/genética , Transcriptoma
15.
Prep Biochem Biotechnol ; 51(2): 137-143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32755478

RESUMO

Pretreatment can improve the hydrolysis efficiency of cellulose, in which biological pretreatment plays an important role. In the present study, we uncovered that Rhodococcus has the ability of lignin degradation, which can decompose lignin and serve as a carbon source to meet the needs of its own growth. We used Rhodococcus to pretreat the corn stalks and evaluate the effect on cellulose hydrolysis. The concentration of reducing sugar produced by the hydrolysis of corn stalk after pretreatment of Rhodococcus is 2.95 g/L. SEM imaging showed that Rhodococcus pretreatment resulted the surface of corn stalk to be no longer complete, some lamellar structures fall off, and leave obvious traces, and obvious delamination was found at the edge of the fault. AFM imaging showed that the pretreatment changed the lignin structure of the corn stalk material surface, resulting in a higher surface roughness of 9.37. These results indicated that Rhodococcus pretreatment can improve the saccharification efficiency of cellulose by removing lignin and increasing the surface roughness of the material.


Assuntos
Biotecnologia/métodos , Celulose/química , Rhodococcus/metabolismo , Zea mays/metabolismo , Biomassa , Hidrólise , Lignina/química , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Peroxidases/química , Propriedades de Superfície
16.
Appl Biochem Biotechnol ; 192(3): 794-811, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32588207

RESUMO

In this work, an effective hybrid strategy was developed for tandem conversion of biomass to furfurylamine with tin-based solid acid Sn-Maifanitum stone and recombinant Escherichia coli whole cells harboring ω-transaminase. 90.3 mM furfural was obtained from corncob (75 g/L) at 170 °C for 0.5 h over Sn-Maifanitum stone catalyst (3.5 wt%) in the aqueous media (pH 1.0), which could be further bioconverted into furfurylamine at 74.0% yield (based on biomass-derived furfural) within 20.5 h. Finally, an efficient recycling and reuse of Sn-Maifanitum stone catalyst and immobilized Escherichia coli AT2018 whole-cell biocatalyst was developed for the synthesis of furfurylamine from biomass in the one-pot reaction system.


Assuntos
Biomassa , Furanos/metabolismo , Biocatálise , Biotransformação , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
17.
ACS Chem Biol ; 15(1): 63-73, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31613083

RESUMO

Human rhinovirus 3C protease (HRV 3C-P) is a high-value commercial cysteine protease that could specifically recognize the short peptide sequence of LEVLFQ↓GP. In here, a strategy based on our previous Yeast Endoplasmic Reticulum Sequestration Screening (YESS) approach was developed in Saccharomyces cerevisiae, a model microorganism, to fully characterize the substrate specificity of a typical human virus protease, HRV 3C-P, in a quantitative and fast manner. Our results demonstrated that HRV 3C-P had very high specificity at P1 and P1' positions, only recognizing Gln/Glu at the P1 position and Gly/Ala/Cys/Ser at the P1' position, respectively. Comparably, it exhibited efficient recognition of most residues at the P2' position, except Trp. Further biochemical characterization through site mutagenesis, enzyme structural modeling, and comparison with other 3C proteases indicated that the S1 pocket of HRV 3C-P was constituted by neutral and basic amino acids, in which His160 and Thr141 specifically interacted with Gln or Glu residues at the substrate P1 position. Additionally, the stringent S1' pocket determined its unique property of only accommodating residues without or with short side chains. Based on our characterization, LEVLFQ↓GM was identified as a more favorable substrate than the original LEVLFQ↓GP at high temperature, which might be caused by the conversion of random coils to ß-turns in HRV 3C-P along with the temperature increase. Our studies prompted a further understanding of the substrate specificity and recognition mechanism of HRV 3C-P. Besides, the YESS-PSSC combined with the enzyme modeling strategy in this study provides a general strategy for deciphering the substrate specificities of proteases.


Assuntos
Cisteína Endopeptidases/química , Peptídeos/química , Rhinovirus/enzimologia , Proteínas Virais/química , Proteases Virais 3C , Sequência de Aminoácidos , Sítios de Ligação , Cisteína Endopeptidases/genética , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Mutagênese , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , Termodinâmica , Proteínas Virais/genética
18.
Bioengineered ; 10(1): 513-521, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31661645

RESUMO

Lignocellulose is considered as a good resource for producing renewable energy. Previous in vitro studies have shown the synergistic action between cellulase and xylanase during lignocellulose biohydrolysis. In order to achieve the same effect in S. cerevisiae to enhance the practical biotransformation, two recombinant Saccharomyces cerevisiae strains (INVSc1-CBH-CA and INVSc1-CBH-TS) with co-expressed cellulase and xylanase were constructed. The cellulase and xylanase activities in INVSc1-CBH-CA and INVSc1-CBH-TS were 716.43 U/mL and 205.13 U/mL, 931.27 U/mL and 413.70 U/mL, respectively. The recombinant S. cerevisiae can use the partly delignified corn stover (PDCS) more efficiently and more ethanol producted than S. cerevisiae only expressing cellulase. Fermentation with INVSc1-CBH-CA and INVSc1-CBH-TS using PDCS ethanol yields increased by 1.7 and 2.1 folds higher than INVSc1-CBH, 2.8 and 3.4 folds higher than the wild type S. cerevisiae. The strategy of co-expression cellulase and xylanase in saccharomyces cerevisiae is effective and can be a foundation to research the mechanism of synergy effect of cellulose and xylanase.


Assuntos
Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/microbiologia , Celulase/genética , Endo-1,4-beta-Xilanases/genética , Fermentação , Expressão Gênica , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Resíduos/análise , Zea mays/química , Zea mays/metabolismo
19.
Int J Biol Macromol ; 131: 676-681, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904528

RESUMO

Natural lignocellulose is used as raw material to produce chemicals through biological transformation. The accessibility of cellulase to substrate was also one of the limiting factors of industrial production. Polyethylene glycol (PEG) can be used as additive in enzymatic hydrolysis of lignocellulose. In this study, enzymatic activity on simultaneous or non-simultaneous addition of PEG 4000 was investigated, and the partly delignified rice straw, the rice straw and filter paper were used as substrates, respectively. Enzyme activity was characterized by reducing sugar concentration in supernatant which was quantified through 3,5-dinitrosalicylic acid (DNS) method. Addition of PEG has been proven to facilitate enzymatic hydrolysis of lignocellulosic materials. Furthermore, PEG had the positive effect on hydrolytic enzyme activity of pure cellulose materials without lignin. Changes in lignocellulose materials have been observed by inverted microscope and Scanning electron microscope (SEM), and no chemical changes were shown by Fourier transform infrared spectroscopy (FTIR). The promotion of PEG on enzymatic hydrolysis of pure cellulose materials may be due to its loose physical structure and similar phenomenon in natural lignin materials. PEG loosens the physical structure of lignocellulose, thus facilitating enzymatic hydrolysis. This may be a new idea to optimize the lignocellulosic enzymatic hydrolysis process.


Assuntos
Celulase/química , Lignina/química , Polietilenoglicóis/química , Carboidratos/química , Hidrólise , Estrutura Molecular , Especificidade por Substrato
20.
Enzyme Microb Technol ; 122: 55-63, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638508

RESUMO

Porcine interferon-α (pIFN-α) could be used as the vaccine adjuvant to enhance the antiviral ability of porcine in swine industry. In here, a combinational strategy integrating codon optimization, multiple gene insertion, strong AOX1 promoter, and efficient secretion signal sequence was developed to obtain high-level secreted pIFN-α in Pichia pastoris GS115. The codon optimized pIFN-α shared 76% sequence identity with the original pIFN-α, which was inserted into the P. pastoris genome under AOX1d1-2x201 promoter and MF4I secretion sequence. Our results showed positive correlation between the mRNA and secreted protein levels with the copy numbers of genome-integrated pIFN-α gene in the recombinant P. pastoris strains. The recombinant opt-pIFN-α-6C strain bearing six copies of pIFN-α expression cassette produced the highest extracellular secretion of pIFN-α of 3.2 ± 0.1 mg/mL in shake flask experiment, and 17.0 ± 0.8 mg/mL in a 5 L high-cell-density cultivation after methanol induction of 84 h. The antiviral activity of secreted pIFN-α from the high-cell-density cultivation was determined to be approximately 2.8 ± 0.9 × 109 IU/mL against the vesicular stomatitis virus (VSV) infected Madin-Darby bovine kidney (MDBK) cells. This strategy provided an efficient way to generate recombinant P. pastoris strains in a non-antibiotics-selection manner, which might also give general guidance for the heterologous expression of other proteins in P. pastoris.


Assuntos
Expressão Gênica , Interferon-alfa/biossíntese , Interferon-alfa/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Animais , Antivirais/farmacologia , Reatores Biológicos , Bovinos , Linhagem Celular , Fermentação , Expressão Gênica/efeitos dos fármacos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Metanol/farmacologia , Pichia/genética , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Suínos , Vesiculovirus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA